Study guide Unit 2 - Equations and inequalities - 1st block sem1 2015-2016

Name: ___

Which of the following equations could be used to 1. solve this problem?

> The product of two consecutive integers is 132.

- (A) n + (n + 1) = 132(B) 2n + 1 = 132
- (C) n(n+1) = 132(D) n(n+2) = 132
- The length of a rectangle is 12 more than the 2. width. The area is 325. Which equation best represents the situation if W represents the width of the rectangle?
 - (A) $w^2 + 325w + 12 = 0$
 - (B) $w^2 12w 325 = 0$
 - (C) $w^2 + 12w 325 = 0$
 - (D) $w^2 325w + 12 = 0$
- 3. Twelve more than a number x is less than three times the number. Which of the following inequalities best represents this information?

A	12 + x > 3x	
C	12x < 3x	(D) $x + 12 > 3x$

4. Translate into an equation.

> An ice cube with a surface area of 60 in.^2 is placed in the sun. As it melts, it loses 15% of its surface area each minute. Let y be the surface area of the ice cube x minutes after it is placed in the sun.

(B) $y = 60(1 - 0.15)^x$ (A) $x = 12(1 + 0.6)^{y}$ $\bigcirc x = 60(1 - 0.15)^y$ $\bigcirc y = x(1 - 0.15)^{60}$

Date: ____

5. On January 1, 1934, George Orwell deposited \$30 in a bank that paid 4% interest compounded annually. How much money was in that account on January 1, 1984?

A	\$90.00	B	\$151.88

- © \$162.17 D \$213.20
- Solve the formula E = I(R + r) for r. 6.

(A)
$$r = EIR$$

(B) $r = EI - R$
(C) $r = \frac{E - IR}{I}$
(D) $r = \frac{ER}{I}$

Given the formula $S = \frac{1}{2}n(a + \ell)$, solve for *n*. 7.

8.
$$\frac{x^{2a}}{x^{2b}}$$
 is equivalent to which expression?
(A) x^{2a+2b} (B) x^{2a-2b} (C) x^{4ab} (D)

(B) x^{2a-2b}

 $x^a \cdot x^b$ is equivalent to which expression? 9.

> x^{a+b} (D) x^{a^b} B x^{ab} (C) $x^{a/b}$ (A)

(C) x^{4ab}

(D) $x^{a/b}$

10. Which of the following is *never* true, given *m* and *n* are positive integers greater than 0?

(A)
$$x^m x^n = x^{\frac{m}{n}}$$
 (B) $x^{\frac{m}{n}} = x^{m-n}$
(C) $(x^m)^{-n} = \frac{1}{x^{mn}}$ (D) $(x^m)^n = x^{mn}$

11.	When is $\left(\frac{4}{5}\right)^m$	= 1 a tru	ue sta	itement?			20.	Write	$\sqrt[5]{7^2}$ i	in exj	ponential	form	n.		
	(a) when $m > 0$)	B	when <i>n</i>	ı < 0			(Å) 7 ²	2/5	₿	7 ^{5/2}	©	7 ¹⁰	D	5 ⁴⁹
	\bigcirc when $m = 0$)	D	never			21.	Write	x ^{3/5} ii	n rad	ical form	1.			
12.	Solve: $\sqrt{2x} = 6$							Αv	$\sqrt{x^{5/3}}$			B	$(\sqrt{x})^{5/3}$	3	
	A 6 B	18	©	36	D	Ø		\bigcirc $\sqrt[3]{V}$	$\sqrt{x^5}$			D	$\sqrt[5]{x^3}$		
13.	Solve: $\sqrt{2x} + 7 =$	= 11					22.	Write	$\sqrt[4]{8^3}$ i	in exj	ponential	form	n.		
	(A) 2 (B)	$5\frac{4}{5}$	©	8	D	Ø		(A) 3	1/2	B	84/3	©	8 ^{3/4}	D	812
14.	Solve: $\frac{1}{20} = \frac{\sqrt{b}}{5}$	-					23.	Find:	$36^{-\frac{1}{2}}$						
		$\frac{5}{16}$	©	$\frac{1}{20}$	D	$\frac{1}{16}$		A –	-6	B	$\frac{1}{6}$	©	$\frac{1}{72}$	D	$\frac{1}{18}$
15.	Solve: $\sqrt{8x+8}$	= 4					24.	Evalua	ate: (6	64) ⁻² /	/3				
	(A) 0 (B)	1	©	2	D	8		A –	-16	B	$-\frac{1}{16}$	©	$\frac{1}{16}$	D	16.2
16.	Solve: $\frac{3}{x+1} + \frac{3}{2}$	$\frac{4}{x+2} = 2$													
	(A) $-\frac{3}{2}, 2$ (B)	$-\frac{8}{7}$	©	-1, 3	D	-3, 1									
17.	Solve: $\frac{3}{x-3} - \frac{3}{x-3}$	$\frac{4}{x+2} = -$	-4												
	(A) $-1, \frac{3}{2}$ (B)	$-\frac{1}{2}$, 3	©	22	D	$-\frac{3}{4}$, 2									
18.	Solve the equation	on: $\frac{3}{2x-}$	=	$\frac{1}{3x-5}$											
19.	Which is equival	lent to 12	$25^{\frac{1}{3}}?$												
	(A) $\sqrt[3]{125}$		B	$\frac{1}{125^3}$											
	$\bigcirc \frac{1}{125^{-3}}$		D	$\frac{125}{125^3}$											
							1								

25. Which graph shows the solution to the following system of inequalities?

 $3y + 2x \ge 6$ $2x - y \le 7$

26. Match the system with the given graph.

The correct system for the graph is:

A	$3x - y \ge -3$ $2x + y \ge -2$	B	$3x - y \le 2$ $2x - y \ge 2$
©	$3x - y \ge -3$ $2x + y \ge -2$	D	$3x + y \le -3$ $2x - y \ge -2$

28. The population of Centerville has grown from 1000 in 1965 as defined by the formula

 $P = 1000 (2^t)$

where P is the total population and t is the number of years that have passed. What was the population of Centerville in 1970?

(A)	3,200		(B)	16,000

- © 20,000 D 32,000
- 29. Jack deposits \$400 into an account that earns 7% interest compounded yearly. The amount in his account, *A*, is given by the equation

 $A = 400(1 + 0.07)^t$

where t is the number of years the money has remained in the account. How much to the nearest dollar will Jack have at the end of the fifth year?

A \$457 B \$553 C \$561 D \$596

30. The formula for exponential decay is $y = a(1 - r)^t$, where *a* is the initial amount *r* is the rate of decay and *t* is the number of intervals. Use the formula to determine the answer to the following problem.

On Monday, your teacher gives you a list of twenty square roots to be memorized. You memorize all of them Monday night and do not look at the list again. If you forget 3% of the list each day, how many square roots will you remember three days later?

31. Solve for *x*: $\log_5 x = 3$

$$(A) -\frac{5}{3}$$
 $(B) -\frac{3}{5}$ $(C) -125$ $(D) -15$

32. Solve for *x*: $\log_2 x = 5$

(A) $\frac{5}{2}$ (B) 10	© 25	D	32
--------------------------	------	---	----

33. Evaluate: $\log_3\left(\frac{1}{243}\right)$

34. If $y = 10^x$, then:

- 35. What is the equation of the inverse of the exponential function $y = 4^x$?

(A)
$$y = \log_4 x$$
 (B) $x = \log_4 y$