Name: \qquad

1. Which of the following equations could be used to solve this problem?

The product of two consecutive integers is 132 .
(A) $n+(n+1)=132$
(B) $2 n+1=132$
(C) $n(n+1)=132$
(D) $n(n+2)=132$
2. The length of a rectangle is 12 more than the width. The area is 325 . Which equation best represents the situation if W represents the width of the rectangle?
(A) $w^{2}+325 w+12=0$
(B) $w^{2}-12 w-325=0$
(C) $w^{2}+12 w-325=0$
(D) $w^{2}-325 w+12=0$
3. Twelve more than a number x is less than three times the number. Which of the following inequalities best represents this information?
(A) $12+x>3 x$
(B) $x+12<3 x$
(C) $12 x<3 x$
(D) $x+12>3 x$
4. Translate into an equation.

An ice cube with a surface area of $60 \mathrm{in}^{2}$ is placed in the sun. As it melts, it loses 15% of its surface area each minute. Let y be the surface area of the ice cube x minutes after it is placed in the sun.
(A) $x=12(1+0.6)^{y}$
(B) $y=60(1-0.15)^{x}$
(C) $x=60(1-0.15)^{y}$
(D) $y=x(1-0.15)^{60}$

Date: \qquad
puezyx 51
5. On January 1, 1934, George Orwell deposited $\$ 30$ in a bank that paid 4% interest compounded annually. How much money was in that account on January 1, 1984?
(A) $\$ 90.00$
(B) $\$ 151.88$
(C) $\$ 162.17$
(D) $\$ 213.20$
6. Solve the formula $E=I(R+r)$ for r.
(A) $r=E I R$
(B) $r=E I-R$
(C) $r=\frac{E-I R}{I}$
(D) $r=\frac{E R}{I}$
7. Given the formula $S=\frac{1}{2} n(a+\ell)$, solve for n.
(A) $n=\frac{2 s}{a+\ell}$
(B) $n=S-\frac{a+\ell}{2}$
(C) $n=2 S-(a+\ell)$
(D) $n=S+2(a+\ell)$
8. $\frac{x^{2 a}}{x^{2 b}}$ is equivalent to which expression?
(A) $x^{2 a+2 b}$
(B) $x^{2 a-2 b}$
(C) $x^{4 a b}$
(D) $x^{a / b}$
9. $x^{a} \cdot x^{b}$ is equivalent to which expression?
(A) x^{a+b}
(B) $x^{a b}$
(C) $x^{a / b}$
(D) $x^{a^{b}}$
10. Which of the following is never true, given m and n are positive integers greater than 0 ?
(A) $x^{m} x^{n}=x^{\frac{m}{n}}$
(B) $x^{\frac{m}{n}}=x^{m-n}$
(C) $\left(x^{m}\right)^{-n}=\frac{1}{x^{m n}}$
(D) $\left(x^{m}\right)^{n}=x^{m n}$
11. When is $\left(\frac{4}{5}\right)^{m}=1$ a true statement?
(A) when $m>0$
(B) when $m<0$
(C) when $m=0$
(D) never
12. Solve: $\sqrt{2 x}=6$
(A) 6
(B) 18
(C) 36
(D) \varnothing
13. Solve: $\sqrt{2 x}+7=11$
(A) 2
(B) $5 \frac{4}{5}$
(C) 8
(D) \varnothing
14. Solve: $\frac{1}{20}=\frac{\sqrt{b}}{5}$
(A) $\frac{1}{4}$
(B) $\frac{5}{16}$
(C) $\frac{1}{20}$
(D) $\frac{1}{16}$
15. Solve: $\sqrt{8 x+8}=4$
(A) 0
(B) 1
(C) 2
(D) 8
16. Solve: $\frac{3}{x+1}+\frac{4}{x+2}=2$
(A) $-\frac{3}{2}, 2$
(B) $-\frac{8}{7}$
(C) $-1,3$
(D) $-3,1$
17. Solve: $\frac{3}{x-3}-\frac{4}{x+2}=-4$
(A) $-1, \frac{3}{2}$
(B) $-\frac{1}{2}, 3$
(C) 22
(D) $-\frac{3}{4}, 2$
18. Solve the equation: $\frac{3}{2 x-1}=\frac{1}{3 x-5}$
19. Which is equivalent to $125^{\frac{1}{3}}$?
(A) $\sqrt[3]{125}$
(B) $\frac{1}{125^{3}}$
(C) $\frac{1}{125^{-3}}$
(D) $\frac{125}{125^{3}}$
20. Write $\sqrt[5]{7^{2}}$ in exponential form.
(A) $7^{2 / 5}$
(B) $7^{5 / 2}$
(C) 7^{10}
(D) 5^{49}
21. Write $x^{3 / 5}$ in radical form.
(A) $\sqrt{x^{5 / 3}}$
(B) $(\sqrt{x})^{5 / 3}$
(C) $\sqrt[3]{x^{5}}$
(D) $\sqrt[5]{x^{3}}$
22. Write $\sqrt[4]{8^{3}}$ in exponential form.
(A) $3^{1 / 2}$
(B) $8^{4 / 3}$
(C) $8^{3 / 4}$
(D) 8^{12}
23. Find: $36^{-\frac{1}{2}}$
(A) -6
(B) $\frac{1}{6}$
(C) $\frac{1}{72}$
(D) $\frac{1}{18}$
24. Evaluate: $(64)^{-2 / 3}$
(A) - 16
(B) $-\frac{1}{16}$
(C) $\frac{1}{16}$
(D) 16.2
25. Which graph shows the solution to the following system of inequalities?

$$
\begin{array}{r}
3 y+2 x \geq 6 \\
2 x-y \leq 7
\end{array}
$$

(A)

(B)

(C)

(D)

26. Match the system with the given graph.
(A) $x+2 y \geq-2$

$$
y \leq 2
$$

(B) $x+2 y \geq 2$

$$
x+0 y \leq 2
$$

(C) $x-2 y \leq 1$
$0 x+y \leq 2$

(D) $2 x-y \leq-2$

$$
y \leq 2
$$

27.

The correct system for the graph is:
(A) $3 x-y \geq-3$
(B) $3 x-y \leq 2$
$2 x+y \geq-2$
$2 x-y \geq 2$
(C) $3 x-y \geq-3$
(D) $3 x+y \leq-3$
$2 x+y \geq-2$
$2 x-y \geq-2$
28. The population of Centerville has grown from 1000 in 1965 as defined by the formula

$$
P=1000\left(2^{t}\right)
$$

where P is the total population and t is the number of years that have passed. What was the population of Centerville in 1970?
(A) 3,200
(B) 16,000
(C) 20,000
(D) 32,000
29. Jack deposits $\$ 400$ into an account that earns 7% interest compounded yearly. The amount in his account, A, is given by the equation

$$
A=400(1+0.07)^{t}
$$

where t is the number of years the money has remained in the account. How much to the nearest dollar will Jack have at the end of the fifth year?
(A) $\$ 457$
(B) $\$ 553$
(C) $\$ 561$
(D) $\$ 596$
30. The formula for exponential decay is $y=a(1-r)^{t}$, where a is the initial amount r is the rate of decay and t is the number of intervals. Use the formula to determine the answer to the following problem.

On Monday, your teacher gives you a list of twenty square roots to be memorized. You memorize all of them Monday night and do not look at the list again. If you forget 3% of the list each day, how many square roots will you remember three days later?
(A) 16
(B) 17
(C) 18
(D) 20
31. Solve for $x: \log _{5} x=3$
(A) $-\frac{5}{3}$
(B) $\frac{3}{5}$
(C) 125
(D) 15
32. Solve for $x: \log _{2} x=5$
(A) $\frac{5}{2}$
(B) 10
(C) 25
(D) 32
33. Evaluate: $\log _{3}\left(\frac{1}{243}\right)$
(A) -5
(B) 9
(C) 27
(D) 5
34. If $y=10^{x}$, then:
(A) $y=\log _{x} 10$
(B) $y=\log _{10} x$
(C) $x=\log _{10} y$
(D) $x=\log _{y} 10$
35. What is the equation of the inverse of the exponential function $y=4^{x}$?
(A) $y=\log _{4} x$
(B) $x=\log _{4} y$
(C) $y=\log _{x} 4$
(D) $y=\log _{\frac{1}{4}} x$

