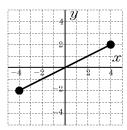
Name: _____

- Show ALL work (where applicable) for full credit.
- 1. Which of the following is always true for all functions?
 - I. Zero cannot be in the domain.
 - II. For every *x* there is only one *y*.
 - III. For every *y* there is only one *x*.
 - A. I only B. II only
 - C. III only D. I and III only
- 2. This equation represents what type of function?
 - $y = 3x^2 5$
 - A. linear B. quadratic
 - C. absolute value D. cubic
- 3. What is the domain of the given relation?


 $\{(2,2), (3,2), (2,3), (1,4)\}$

- A. $\{2, 3, 4\}$ B. $\{1, 2, 3\}$
- C. $\{1,4\}$ D. $\{2,3\}$
- 4. State the domain and range of the function y = -3x 2. Note: $x \in \mathbb{R}$ means $x \in (-\infty, \infty)$

A. $x \in \mathbb{R}$ and $y \in \mathbb{R}$ B. $x \in \mathbb{R}$ and y > 0

C. $x \neq 0$ and $y \neq 0$ D. $x \in \mathbb{R}$ and y > -2

5. State the domain of the function.

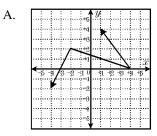
- A. $x \ge -4$
- B. $-2 \le x \le 2$
- C. $-4 \le x \le 4$
- D. $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

6.	CT.	1	I	[]	y				
				T					
				-2		_	_	_	->
	└∔-		ļ		/				x
		+	-		6		_	_	
			Í						
				-2					
	+-		†						
	┝╍┿╸		+	-4					

What is the domain of the function shown?

A. $x \ge 0$ B. $y \ge 0$ C. $y \le 0$ D. all real numbers

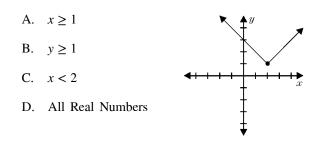
7. What is the range of the function


$$f(x) = 2x + 3$$

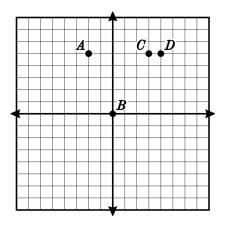
when the domain is $\{-3, -1, 1\}$?

- A. $\{0, 2, 4\}$ B. $\{9, 5, 3\}$
- C. $\{3, -1, -5\}$ D. $\{-3, 1, 5\}$

- 8. This equation represents what type of function?
 - y = |x 4| + 2
 - A. quadratic B. exponential
 - C. absolute value D. cubic
- 9. Which of the following graphs is a function?


B.				y		
в.			+6			
			+4			····
	·	•••••	+8	···-		÷…÷…
		····	+2	·		
	į	ļļ		ý		ii.,
						x
	-5 -	4 -3 -	2 - 1	+1 +	2 +3 +	4 +5
	1	-	~			
		····	2	····	}	••••••••••••••••••••••••••••••••••••••
	····		4	····‡····		···÷···
		ļļ	5			

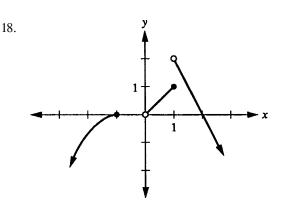
C.	_ = = = = : ↑ ¥ = = = =
с.	10 +1
	*- a
	+2
	*1
	5 5 8 10 1 12 13 14 15


D. none of these

- 10. Which of the following is a quadratic function?
 - A. $f(x) = 3x^4 2x^2 + 7$
 - B. f(x) = 3x 5
 - C. $f(x) = 2x^2 3x + 6$
 - D. f(x) = 3

11. Given the graph, describe the domain.

12. What is a reasonable domain for the relation graphed below?



- A. [-2,4] B. [-1,5]
- C. $\{-2, 0, 3, 4\}$ D. $\{-1, 0, 5\}$
- 13. Find f(x) g(x), given $f(x) = 2x^2 3x + 1$ and $g(x) = x^2 + 10x + 5$.
 - A. $x^2 13x 4$ B. $7x^2 + 24x + 17$ C. $x^2 + 30x - 13$ D. $x^2 - 36x - 17$
- 14. Let $f(x) = \sqrt{x}$, $g(x) = 2\sqrt{x-4} + 6$. Describe g(x) in terms of the parent function, f(x).
 - g(x) is f(x):
 - A. vertical shrink, translated left 4 and up 6
 - B. vertical stretch, translated right 4 and up 6
 - C. horizontal stretch, translated right 6 and down 4
 - D. horizontal shrink, translated right 4 and up 6

- 15. Compared to its "parent" function $f(x) = x^2$, what effect will we see in the graph of f(x) + 7?
 - A. translated 7 units left
 - B. translated 7 units right
 - C. translated 7 units up
 - D. translated 7 units down
- 16. What is the range of the graphed function?

A1, -2, -3	4 <i>Y</i>
B4, -1, 2, 5	x
C. $-3 \le y \le -1$	
D. $-4 \le x < 5$	·

- 17. Consider the equation y = |x|. What effect will replacing x with x + 7 have on the graph?
 - A. slides the graph 7 units left
 - B. slides the graph 7 units up
 - C. slides the graph 7 units down
 - D. shrinks the graph by a factor of 7

Given the graph, find the domain, range, and interval of increasing, decreasing and constant

- 19. If the graph of $y = x^2$ is translated 3 units to the left and 4 units up, what is its equation? Graph the parent function and its translation.
- 20. If the graph of $y = \sqrt{x}$ is translated 2 units to the left, 5 units down, and then flipped over the *x*-axis, what would be the resulting equation? Graph the parent function and its translation.
- 21. The graph of y = |x| is translated 3 units to the left and 4 units down. What is the resulting equation? Graph the parent function and its translation.

22. Graph
$$f(x) = \begin{cases} -3 & \text{if } x < 0 \\ -1 & \text{if } x = 0 \\ x & \text{if } x > 0 \end{cases}$$