Show ALL work (where applicable) for full credit.

- Which of the following is always true for all 1. functions?
 - I. Zero cannot be in the domain.
 - II. For every x there is only one y.
 - III. For every y there is only one x.
 - A. I only
- B. II only
- C. III only
- D. I and III only
- 2. This equation represents what type of function?

$$y = 3x^2 - 5$$

- A. linear
- B. quadratic
- absolute value
- D. cubic
- What is the domain of the given relation? 3.

$$\{(2,2), (3,2), (2,3), (1,4)\}$$

- A. $\{2, 3, 4\}$
- B. {1, 2, 3}
- C. {1,4}
- D. $\{2,3\}$
- State the domain and range of the function y = -3x - 2. Note: $x \in \mathbb{R}$ means $x \in (-\infty, \infty)$
 - A. $x \in \mathbb{R}$ and $y \in \mathbb{R}$
- B. $x \in \mathbb{R}$ and y > 0
- C. $x \neq 0$ and $y \neq 0$ D. $x \in \mathbb{R}$ and y > -2

5. State the domain of the function.

Date: _

- A. $x \ge -4$
- B. $-2 \le x \le 2$
- C. $-4 \le x \le 4$
- D. $\{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$
- 6.

What is the domain of the function shown?

- A. $x \ge 0$
- B. $y \ge 0$
- C. $y \le 0$
- D. all real numbers
- 7. What is the range of the function

$$f(x) = 2x + 3$$

when the domain is $\{-3, -1, 1\}$?

- A. $\{0, 2, 4\}$
- B. $\{9,5,3\}$
- C. $\{3, -1, -5\}$
- D. $\{-3, 1, 5\}$

This equation represents what type of function? 8.

$$y = |x - 4| + 2$$

- A. quadratic
- B. exponential
- C. absolute value
- D. cubic
- 9. Which of the following graphs is a function?

B.

C.

- D. none of these
- 10. Which of the following is a quadratic function?

A.
$$f(x) = 3x^4 - 2x^2 + 7$$

B.
$$f(x) = 3x - 5$$

C.
$$f(x) = 2x^2 - 3x + 6$$

D.
$$f(x) = 3$$

11. Given the graph, describe the domain.

A.
$$x \ge 1$$

B.
$$y \ge 1$$

What is a reasonable domain for the relation graphed below?

A.
$$[-2, 4]$$

B.
$$[-1,5]$$

C.
$$\{-2,0,3,4\}$$

D.
$$\{-1, 0, 5\}$$

13. Find f(x) - g(x), given $f(x) = 2x^2 - 3x + 1$ and $g(x) = x^2 + 10x + 5.$

$$\Lambda = r^2 = 13r$$

A.
$$x^2 - 13x - 4$$
 B. $7x^2 + 24x + 17$

C.
$$x^2 + 30x - 13$$
 D. $x^2 - 36x - 17$

D.
$$x^2 - 36x - 17$$

14. Let $f(x) = \sqrt{x}$, $g(x) = 2\sqrt{x-4} + 6$. Describe g(x)in terms of the parent function, f(x).

$$g(x)$$
 is $f(x)$:

- A. vertical shrink, translated left 4 and up 6
- vertical stretch, translated right 4 and up 6
- C. horizontal stretch, translated right 6 and down 4
- D. horizontal shrink, translated right 4 and up 6

- 15. Compared to its "parent" function $f(x) = x^2$, what effect will we see in the graph of f(x) + 7?
 - A. translated 7 units left
 - B. translated 7 units right
 - C. translated 7 units up
 - D. translated 7 units down
- 16. What is the range of the graphed function?

A.
$$-1, -2, -3$$

B.
$$-4$$
, -1 , 2, 5

C.
$$-3 \le y \le -1$$

- 17. Consider the equation y = |x|. What effect will replacing x with x + 7 have on the graph?
 - A. slides the graph 7 units left
 - B. slides the graph 7 units up
 - C. slides the graph 7 units down
 - D. shrinks the graph by a factor of 7

Given the graph, find the domain, range, and interval of increasing, decreasing and constant

- 19. If the graph of $y = x^2$ is translated 3 units to the left and 4 units up, what is its equation? Graph the parent function and its translation.
- 20. If the graph of $y = \sqrt{x}$ is translated 2 units to the left, 5 units down, and then flipped over the *x*-axis, what would be the resulting equation? Graph the parent function and its translation.
- 21. The graph of y = |x| is translated 3 units to the left and 4 units down. What is the resulting equation? Graph the parent function and its translation.
- 22. Graph $f(x) = \begin{cases} -3 & \text{if } x < 0 \\ -1 & \text{if } x = 0 \\ x & \text{if } x > 0 \end{cases}$